Indiana Michigan Power Company

RESOURCE CONSIDERATIONS FOR HYPERSCALER CUSTOMERS

August 8, 2024

An AEP Company

Welcome & Introductions

I&M Leadership Team

David Lucas | Vice President, Regulatory and Finance Andrew Williamson | Director, Regulatory Services Stacie Gruca | Manager, Regulatory Services Austin DeNeff | Regulatory Consultant Senior

I&M IRP Planning

Greg Soller | Manager, Resource Planning Dylan Drugan | Manager, Resource Planning

I&M Infrastructure Development

Tim Gaul | Director, Regulated Infrastructure Development

1898 & Co.

Brian Despard | Senior Project Manager

I&M Infrastructure Development

Nick Fisher | Managing Director, Engineering

Time (EST)	Agenda Topic	Lead
2:00-2:10	 Welcome & Introductions Meeting Objectives 	Andrew Williamson
2:10-2:20	Portfolio Performance Indicators	Greg Soller
2:20-2:30	Going-In Position Review (Capacity)	Dylan Drugan
2:30-2:50	 Market Assessment of Existing and New Resources Queue Analysis Of New Resources Existing Market Resources Assessment Market Pricing Pressures 	Tim Gaul
2:50-3:10	 <u>Technology Assumptions</u> Proposed Modeling Parameters Advanced Technology Potential and Timing 	Dylan Drugan
3:10-3:20	Scenarios and Sensitivities	Dylan Drugan
3:20-4:00	 Open Discussion Feedback From HSL Customers 	Andrew Williamson

Portfolio Performance Indicators

IURC Pillar	IRP Objective	Performance Indicator	Metric Description
Reliability	Maintain capacity reserve margin and the consideration of	Energy Market Exposure – Purchases	Cost and volume exposure of market purchases (Costs and MWhs % of Internal Load) in 2033 and 2044
	reliance on the market for the benefit of customers.	Energy Market Exposure - Sales	Revenue and volume exposure of market sales (Revenues and MWhs % of Internal Load) in 2033 and 2044
		Planning Reserves	Target Reserve Margin
		Net Present Value Revenue Requirement (NPVRR)	Portfolio 30yr NPVRR
Affordability	Maintain focus on cost and risks to customers	Levelized Rate (\$/MWh)	Portfolio 30yr Levelized Rate (NPVRR/Levelized Energy)
		Near-Term Rate Impacts (CAGR)	7-year CAGR of Annual Rate
		Portfolio Resilience	Range of Portfolio NPVRR and associated Rate Impact (\$/MWh) (at rqd IRP Planning Period) costs dispatched across all Scenarios
Resiliency	Maintain diversity of resources	Resource Diversity	Diversity Index inclusive of Capacity and Energy Diversity
	and neet dispatchability	Fleet Resiliency	% Dispatchable Capacity of Company Peak Load
(Grid) Stability	Maintain fleet of flexible and dispatchable resources	Fleet Resiliency	% Dispatchable Capacity of Company Peak Load
Environmental Sustainability	Maintain focus on portfolio	Emissions Change	CO2, NOx, SO2 emissions change compared to 2005 levels
	benefits and compliance costs	Total Portfolio Costs (NPVRR)	Considered under Affordability Pillar above

ELCC Class	2026/	2027/	2028/	2029/	2030/	2031/	2032/	2033/	2034/
	27	28	29	30	31	32	33	34	35
Onshore Wind	35%	33%	28%	25%	23%	21%	19%	17%	15%
Offshore Wind	61%	56%	47%	44%	38%	37%	33%	27%	20%
Fixed-Tilt Solar	7%	6%	5%	5%	4%	4%	4%	4%	3%
Tracking Solar	11%	8%	7%	7%	6%	5%	5%	5%	4%
Landfill Intermittent	54%	55%	55%	56%	56%	56%	56%	56%	54%
Hydro Intermittent	38%	40%	37%	37%	37%	37%	39%	38%	38%
4-hr Storage	56%	52%	55%	51%	49%	42%	42%	40%	38%
6-hr Storage	64%	61%	65%	61%	61%	54%	54%	53%	52%
8-hr Storage	67%	64%	67%	64%	65%	60%	60%	60%	60%
10-hr Storage	76%	73%	75%	72%	73%	68%	69%	70%	70%
Demand Resource	70%	66%	65%	63%	60%	56%	55%	53%	51%
Nuclear	95%	95%	95%	96%	95%	96%	96%	94%	93%
Coal	84%	84%	84%	85%	85%	86%	86%	83%	79%
Gas Combined Cycle	79%	80%	81%	83%	83%	85%	85%	84%	82%
Gas Combustion	61%	63%	66%	68%	70%	71%	74%	76%	78%
Turbine									
Gas Combustion	79%	79%	80%	80%	81%	82%	83%	83%	83%
Turbine Dual Fuel									
Diesel Utility	92%	92%	92%	92%	92%	93%	93%	93%	92%
Steam	74%	73%	74%	75%	74%	75%	76%	74%	73%

Delivery Year	Forecast Pool Requirement (% of Peak Load)
2026/27	93.67%
2027/28	92.69%
2028/29	92.75%
2029/30	93.47%
2030/31	92.96%
2031/32	92.72%
2032/33	92.10%
2033/34	89.99%
2034/35	87.09%

https://www.pjm.com/-/media/planning/res-adeq/elcc/preliminary-elcc-class-ratings-for-period-2026-2027-through-2034-2035.ashx

- I&M's forecasted capacity need is influenced by the accredited capacity PJM recognizes for I&M's resources (i.e., ELCC Class values) as well as by the load requirement PJM sets (i.e., the "FPR" or Forecast Pool Requirement).
- PJM's forecasted decline in ELCC class values for resources such as wind, solar, and storage is offset, in part, by a lower forecasted peak load requirement (i.e., a lower FPR).

Capacity Needs Assessment INDIANA MICHIGAN POWER (Preliminary Going-In Position) An AEP Company

To reasonably capture contingency risk around future uncertainties such as changes to load obligations and available capacity, a probabilistic risk analysis is being performed to evaluate a 'Target Reserve Margin. The final Target Reserve Margin is still under development and is shown above for illustrative purposes.

Resource Availability – IN, MI, IL, OH, KY

NOTE: Stacked Bar Chart Labels Represent Project Counts

Proposed Resource Modeling Parameters

Resource Type	First Year Available	Nameplate Capacity (MW)	2025-2029 Cumulative Build Limit (MW)	2030 - 2045 Cumulative Build Limit (MW)	Overnight Cost Range ^{1,2} \$/kW			
Base Load								
NUCLEAR SMALL MODULAR REACTOR	2036	600	0	4,800	\$11,400 - \$14,300			
NEW NG COMBINED CYCLE ³	2029	1,100	1,100	9,900	\$1,300 - \$2,100			
NG COMBINED CYCLE, H- Class (Single Shaft) W/90% CO2 CAPTURE	2030	430	0	9,890	\$3,600 - \$4,500			
EXISTING NG COMBINED CYCLE	2027	600	2,400	2,400	\$1,300			
	-	Peaking						
NG COMBUSTION TURBINE F CLASS	2029	240	1,920	4,800	\$1,100 - \$1,400			
EXISTING NG COMBUSTION TURBINE	2027	500	2,000	2,000	\$500			
COMBUSTION TURBINES AERODERIVATIVE	2029	100	300	1,200	\$1,800 - \$2,200			
RECIPROCATING INTERNAL COMBUSTION ENGINES (RICE)	2029	20	100	400	\$2,800 - \$3,500			
	Int	ermitten	t					
BATTERY ENERGY STORAGE SYSTEM, 4hr	2027	50	1,000	4,000	\$1,700 - \$2,100			
BATTERY ENERGY STORAGE SYSTEM, 6hr	2027	50	250	4,000	\$2,700 - \$3,300			
BATTERY ENERGY STORAGE SYSTEM, 8hr	2027	50	100	4,000	\$3,300 - \$4,200			
BATTERY ENERGY STORAGE SYSTEM, 10hr	2027	50	20	4,000	\$4,200 - \$5,200			
BATTERY ENERGY STORAGE SYSTEM, 100hr	2029	20	20	1,000	\$2,700 - \$3,400			
ONSHORE WIND	2029	150	1,050	4,950	\$2,400 - \$3,000			
SOLAR	2027	150	4,050	4,950	\$1,800 - \$2,200			
SOLAR WITH BATTERY SYTEM, 4hr	2027	150	1,050	4,950	\$2,400 - \$2,900			
		Other						
SHORT-TERM MARKET PURCHASE (1-Year Term)	2025	TBD, Under Development						
Note 1: Costs represent nominal dollars in the first year that the resource is available. Note 2: Overnight cost ranges do not include any developer fees or AFUDC. Note 3: New NG CC assumptions reflect a blend of F-class, H-class, and single/multi shaft proxy units.								
Assumptions shown above are preliminary and subject to further refinement and updates.								

Scenario	Load	Gas Price	Environmental Regulations	
Base	Base	Base	Dro-EDA 111d	
High Economic Growth	High	High	2023 Proposed	
Low Economic Growth	Low	Low	Rules	
Enhanced Environmental Regulations (EER)	Base	Base	EPA 111d 2023 Proposed Rules	

Proposed Market Sensitivities

Sensitivities	Load	Gas Price	Environmental Regulations		
Base under EPA 111d Requirements	Base	Base	EPA 111d 2024 Final Rules		
Base with High IN Load	High	Base			
Base with Low IN Load	Low	Base			
Rockport Unit 1 Retires 2025	Base	Base	Pre-EPA 111d 2023 Proposed		
Rockport Unit 1 Retires 2026	Base	Base	Rules		
Exit OVEC ICPA in 2030	Base	Base			
High Technology Cost	Base	Base			

Feedback and Discussion

An AEP Company